Features

- Single Positive Voltage Supply (5V to 16.5 V)
- Adjustable Drain Voltage 3V to 15 V
- Adjustable Drain Current up to 500 mA
- Internal Negative Voltage Generator
- Active Bias Current Regulation
- Stable Bias Current Over Temperature and Process Variation and Aging

ACTIVE BIAS CONTROLLER

- Short Circuit Protection (Power Foldback)
- Adjustable Over/Under-Current Alarm
- Adjustable Low Vdd Voltage Alarm
- Automated Power-up Sequencing
- Enable Input for Active Bias Control
- Trigger-out Output for Daisy Chain Power-Up and Power-Down Sequencing

Typical Applications

- Cellular Base Station
- Military \& Space
- Wireless Infrastructure Equipment
- Test Instrumentation
- Microwave Radio \& VSAT

Functional Diagram

HMC920LP5E

ACTIVE BIAS CONTROLLER

General Description

HMC920LP5E is an active bias controller which generates a regulated Drain voltage and actively adjusts the gate voltage of an external amplifier to achieve constant bias current. It can be used to bias any enhancement and depletion type amplifiers operating in Class-A regime with Drain voltages (VDRAIN) from 3 V to 15 V and drain currents (IDRAIN) up to 500 mA , offering a complete biasing solution.

HMC920LP5E achieves excellent bias stability over supply, temperature and process variations, and eliminates the required calibration procedures used to prevent RF performance degradation due to such variations.

The HMC920LP5E is housed in an RoHS compliant $5 \times 5 \mathrm{~mm}$ QFN leadless package with an exposed backside pad to improve thermal characteristics.

Electrical Specifications, $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{Vdd}=\mathrm{Vdd} 1=\mathrm{Vdd} 2=15 \mathrm{~V}$

Parameter	Symbol	Conditions		Min.	Typ.	Max.	Units
Supply Voltage	Vdd			5		16.5	V
Quiescent Current	IDD	$\mathrm{Vdd}=5 \mathrm{~V}$	EN = Vdig		35		mA
			EN = GND		20		mA
		$\mathrm{Vdd}=15 \mathrm{~V}$	EN = Vdig		35		mA
			EN = GND		20		mA
Negative Voltage Output	VNEG				-2.5		V
Oscillator Frequency	FOSC				250		kHz
Bandgap Reference	VBGC				2		V
VDIG Feedback	VDIGFB				2.5		V
LDOCC Feedback	LDOFB				2		V
Enable Input Threshold	ENTHRS	Vinlow				1	V
		Vinhigh		1.4			V
ALMTRIG Input Threshold	ALMTRIG	Vinlow				1	V
		Vinhigh		1.4			V
Low Vdd Alarm Threshold	VddCHK				3.8		V
VDRAIN Characteristics							
DRAIN Current Adjustment Range	IDRAIN			0		500	mA
DRAIN Current Change Over Supply Voltage	-IDRAINV	VDRAIN set to 6V, IDRAIN set to 100 mA ,			0.05		\%/V
DRAIN Current Change Over Temperature					0.03		\%/C
DRAIN Adjustment Range	VDRAIN			3		15	V
VDRAIN Change Over Supply Voltage	\triangle VDRAIN	VDRAIN set to 6 V , IDRAIN set to 100 mA ,			0.05		\%/V
VDRAIN Change Over Temperature					0.008		\%/C
VNEG Characteristics							
Negative Voltage Output	VNEG				-2.5		V
VNEG Current Sink	INEG			0		60	mA
VGATE Characteristics							
GATE Current Supply	IG			-4		4	mA
VGATE Low Level	VG_MIN				VNEG		V
VGATE High Level	VG_MAX				VNEG+4.5		V
VDIG Characteristics							
Adjustment Range	VDIG			3.5		5	V
VDIG Current Source	IDIG					30	mA

HMC920LP5E

IDRAIN Regulation Accuracy vs. Vdd ${ }^{[1][2]}$

VDRAIN Line Regulation Over Temperature

VDRAIN Line Regulation Over IDRAIN

VDIG Line Regulation Over Temperature

VDRAIN Load Regulation Over Vdd

ACTIVE BIAS CONTROLLER

VDRAIN Load Regulation Over Temperature ${ }^{[1]}$

VNEG Load Regulation Over Temperature ${ }^{[2]}$

Enable Waveform

A	Enable Pin, 5 V/div	C	VGATE, 1 V/div
B	VDRAIN, $2 \mathrm{~V} /$ div		

VDIG Load Regulation Over Temperature

VNEG Load Regulation Over Temperature ${ }^{[3]}$

Disable Waveform

A	Enable Pin, 5 V/div	C	VGATE, 1 V/div
B	VDRAIN, 2 V/div		

HMC920LP5E

VDRAIN Load Transient

20 us/div

Power Up Waveform

$5 \mathrm{~ms} / \mathrm{div}$

A	Vdd, 5V/div	C	VGATE, 1V/div
B	VDRAIN, 5V/div	D	VNEG, 1V/div

VDOCC Load Transient

VNEG Load Transient

A	VNEG, $50 \mathrm{mV} /$ div
B	INEG, $5 \mathrm{~mA} / \mathrm{div}$

Power Down Waveform

$10 \mathrm{~ms} / \mathrm{div}$

A	Vdd, 5V/div	C	VGATE, 1V/div
B	VDRAIN, 5V/div	D	VNEG, 1V/div

Absolute Maximum Ratings ${ }^{[1]}$

Vdd1，Vdd2 to GND	-0.3 V to +16.5 V
VDIG to GND	-0.3 V to +5.5 V
VDIGFB，PORCAP，BGCAP，EN， CURALM，ALMTRIG to GND	-0.3 V to（VDIG＋0．3V）
ALMSET，ALMC1，ALMC2， REF to GND	-0.3 V to（Vdd＋0．3V）
VNEGFB，VGATE，VDRAIN，ISENSE to GND	-0.3 V to（Vdd＋0．3V）
VNEGIN to GND	-4 V to（Vdd＋0．3V）
ALML，ALMM，ALMH，LDOCC， LDOFB to GND	-0.3 V to（Vdd＋0．3V）
VGATEFB，TRGOUT，VddALM， VddCHK to GND	-0.3 V to（VDIG＋0．3V）

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

CPGND to GND	-0.3 V to +0.3 V
Vdd1 to Vdd2	-0.3 V to +0.3 V
Junction Temperature	$125^{\circ} \mathrm{C}$
Continuous Pdiss $\left(\mathrm{T}=85^{\circ} \mathrm{C}\right)$ （Derate $256.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\left.85^{\circ} \mathrm{C}\right)$	10.27 Watts
Thermal Resistance $\left(\mathrm{R}_{\text {TH }}\right)$ （Junction to package bottom）	$3.9{ }^{\circ} \mathrm{C} / \mathrm{W}$
Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Operating Temperature	-40 to $+85^{\circ} \mathrm{C}$
ESD Sensitivity（HBM）	Class 1 C

Note that there are two different voltage domains on
HMC920LP5E；a high voltage domain Vdd，and a low voltage domain VDIG．Take necessary precautions not to violate ABS MAX ratings of each subdomains．

Package Information
BOTTOM VIEW

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ${ }^{[1]}$
HMC920LP5E	RoHS－compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 $^{[2]}$	$\frac{\text { H920 }}{X X X X}$

[^0]［2］Max peak reflow temperature of $260^{\circ} \mathrm{C}$

Pin Descriptions

Pin Descriptions (Continued)

Pin Number	Function	Description	Interface Schematic
13	VREF	1.5 V reference voltage. 0.1 uF or greater capacitor to GND is needed for noise filtering.	
14	Vdd2	Bias supply for negative voltage generator. Connect supply voltage with appropriate filtering. Vdd2 supply voltage should be same as Vdd1.	
15	CPOUT	Negative voltage generator charge pump output. Negative voltage generator needs a flying capacitor, a reservoir capacitor and two diodes to operate. Please refer to the application schematic for more info.	
16	DGND	Digital ground domain (DGND).	
11, 17	AGND	Analog ground domain (GND).	
18	VNEGFB	Feedback (Control) pin for Negative Voltage Generator Charge Pump. Float to activate the negative voltage generator / Sort to GND to disable the negative voltage generator.	
19	VNEGIN	Negative input to the chip. Should be supplied with CPOUT when negative voltage generator is enabled, or connect to external VSS when negative voltage generator is enabled. For detailed usage please refer to the "Negative Voltage Generator" section.	
20	VGATEFB	Control pin for VGATEFB. Float VGATEFB when a depletion mode transistor is biased. Selects the mode of operation along with VNEGFB pin. For detailed usage please refer to the Table 1. Mode Selection.	

RoHS $\sqrt{ }$

Pin Descriptions (Continued)

Pin Number	Function	Description	Interface Schematic
21	VGATE	Gate Control pin for external amplifier. Connect to the gate (base) of the external amplifier. In order to guarantee stability, a $10 \mu \mathrm{~F}$ capacitor should be connected between the gate (base) terminal of the external amplifier and GND as close to the amplifier as possible.	
22, 23	VDRAIN	Drain voltage. Should be connected to the supply terminal of the external amplifier. A minimum 100 nF capacitor has to be placed close to the external amplifier to improve load regulation.	
25	ISENSE	To adjust the bias current of the external amplifier connect a resistor (Rsense) from ISENSE pin to GND. Use Eqn. 4 to determine the required Rsense value.	
26	ALML	A high precision resistor (e.g. $0.5 \%, \pm 25 \mathrm{ppm}$ TCR) to GND is needed. The value of the resistor sets the threshold value for under current alarm. Please refer to the "Over/ Under Current Alarm" section for a detailed explanation.	
27	ALMM	A high precision resistor (e.g. $0.5 \%, \pm 25 \mathrm{ppm}$ TCR) between ALML and ALMM is needed. The total external resistance from ALMM pin to GND should always be equal to $5 \mathrm{k} \Omega$. Please refer to the "Over/Under Current Alarm" section for a detailed explanation.	
28	ALMH	A high precision resistor (e.g. $0.5 \%, \pm 25 \mathrm{ppm}$ TCR) to ALMM pin is needed. The value of the resistor sets the threshold value for over current alarm. Please refer to the "Over/Under Current Alarm" section for a detailed explanation.	

ACTIVE BIAS CONTROLLER

RoHS \checkmark

Pin Descriptions (Continued)

Pin Number	Function	Description	Interface Schematic
29	LDOCC	High voltage LDO output pin. To ensure stability, connect a $10 \mu \mathrm{~F}$ capacitor with $\mathrm{ESR}>200 \mathrm{~m} \Omega$ from LDOCC to GND. A tantalum capacitor is recommended to meet the ESR requirement.	
30	LDOFB	Feedback pin of the VDRAIN LDO. VDRAIN voltage is set by two resistors calculated with Eqn. 2.	
32	VddCHK	Should be left floating for regular operation.	
Paddle	GND PAD	Analog ground (AGND).	

Simplified Application Circuit

Notes:
[1] A variable resistor is assembled on R4 slot to adjust bias current for evaluating various different amplifiers without soldering.
[2] A variable resistor is assembled on R1 slot to adjust VDRAIN voltage for evaluating various different amplifiers without soldering.

Simplified Evaluation PCB

List of Materials for Simplified Evaluation PCB EVAL01－HMC920LP5E ${ }^{[1]}$

Item	Description
TP1－TP6	DC Test Point
C1	100 nF Capacitor，0402 Pkg．
C2，C7	10μ F Capacitor，Case B Tantalum
C3	22μ F Capacitor，Tantalum．
C4	100 pF Capacitor，0402 Pkg．
C5，C10	4.7μ F Capacitor，0603 Pkg．
C6，C11	10μ F Capacitor，0603 Pkg．
C9	330 nF Capacitor，0603 Pkg．
D1	Dual Schottky Diode（Digi－Key part number：BAT54SLT1）
R1	50 k Ohm Trim Potentiometer
R4	5 k Ohm Trim Potentiometer
R2，R13	10 k Ohm Resistor，0402 Pkg．
R6	4.99 k Ohm，0402 Pkg．
R7	270 Ohm，0402 Pkg．
U1	HMC920LP5E Active Bias Controller
PCB［2］	EVAL01－HMC920LP5E Evaluation PCB

［1］Reference this number when ordering complete evaluation PCB
［2］Circuit Board Material：FR4

HMC920LP5E

Full Featured Application Circuit

Notes:
[1] A variable resistor is assembled on R19 slot to adjust bias current for evaluating various different amplifiers without soldering.
[2] A variable resistor is assembled on R10 slot to adjust VDRAIN voltage for evaluating various different amplifiers without soldering.
[3] SW2's function is to ENABLE and DISABLE the "Active Bias Control" function of the HMC920LP5E.

Full Featured Evaluation PCB

Careful PCB layout is critical to achieve stable and low noise operation. The negative voltage generator charge pump stage requires particular attention. To isolate the charge pump switching noise from the analog circuit blocks, create two separate ground planes dedicated to AGND and DGND connections. Connect AGND (pin\#17) and DGND (pin\#16) pins to the paddle at a single point under the package. Connect all the components connected to the charge pump (D1, C12 and C14 in the application circuit) to DGND plane, and connect rest of the external components to a low noise AGND.

ACTIVE BIAS CONTROLLER

Application Notes

Detailed Description

HMC920LP5E is an active bias controller which can be configured to provide the supply voltage and adjust the gate voltage of an external amplifier to achieve constant bias current. It can be used to bias both enhancement and depletion type amplifiers. The HMC920LP5E achieves excellent bias stability over supply and temperature variations. The gate control can both sink and source current ($\pm 4 \mathrm{~mA}$) to achieve constant bias current over input power variations.

The HMC920LP5E standard application circuit generates 3.5 V digital supply voltage (VDIG) for internal use, and -2.5 V negative voltage (VNEG) for depletion mode devices. If an external negative supply is already available or an enhancement mode device is targeted, the negative voltage generator can be disabled.

HMC920LP5E controls the bias current of the external amplifier with the gate control block. The current passing through the external amplifier is sampled and is used to control the VGATE voltage connected to the gate of the external amplifier to achieve constant quiescent bias through the external amplifier. This active bias control continuously adjusts the VGATE voltage to achieve constant bias current through the targeted amplifier independent of supply, temperature, process variations, and threshold shifts due to aging.

HMC920LP5E ensures safety of the external amplifier during turn on/off by adjusting the sequence of VDRAIN and VGATE outputs. The current passing through the external amplifier is monitored continuously. If a fault conditions arises (either under or over current) an alarm signal is generated (CURALM, active HIGH). A different alarm signal is generated (VddALM, active LOW) if the HMC920LP5E supply voltage drops below a certain threshold. Both supply voltage and current alarm signals provided in HMC920LP5E does not affect the operation of the controller. Both alarms has designed for monitoring purposes where a system level protection can be implemented with external control circuitry. The HMC920LP5E has power foldback and short circuit protection features.

The HMC920LP5E is a system on chip solution for the biasing needs of RF amplifiers and it has several functional blocks (see functional block diagram on the first page), to achieve the features summarized above. Refer to the section of the specific functional block for the detailed operation and adjustment descriptions.

Typical Application Diagram

ACTIVE BIAS CONTROLLER

$\underbrace{2}_{\text {Earth frienour }}$

Low Voltage Linear Regulator (VDIG)

The HMC920LP5E requires a low voltage bias rail (3.3 V to 5 V) for internal circuitry. An internal linear regulator produces a preset 3.5 V low-current VDIG output. VDIG powers the internal logic circuitry, oscillator and the control of the negative charge pump. VDIG supplies a maximum of 30 mA current and therefore it is recommended for external use only for light loading.

If needed the VDIG output can be adjusted externally through R1 and R3, to a maximum of 5V. To adjust the VDIG value, set R1 to $10 \mathrm{k} \Omega$ and determine the value of R3 using the equation (1):

$$
\begin{equation*}
\mathrm{R} 3=\frac{\mathrm{R} 1}{2.5} \times(V D I G-2.5) \tag{1}
\end{equation*}
$$

Place the R1 and R3 resistor as close as possible to the VDIG FB pin.
To ensure stable operation of VDIG, bypass VDIG to AGND with a $10 \mu \mathrm{~F}$ tantalum capacitor (with $\mathrm{R}_{\mathrm{ESR}}>200 \mathrm{~m} \Omega$) under full-load conditions.

Figure 1. Low Voltage Linear Regulator (VDIG) Block Diagram

If a $3.3 \mathrm{~V} / 5 \mathrm{~V}$ supply is already available externally, internal low-voltage regulator can be disabled to increase the overall system efficiency. To deactivate the internal low-voltage regulator, connect a 00hm resistor on R3 (depopulate R1), and connect the external supply to VDIG pin. The typical current consumption from VDIG pin is less than 5 mA . The correct power up sequence is GND, VDD, VDIG, VNEG, and signal pins.

Reference (BGCAP)

The HMC920LP5E employs two reference voltage generators. The first reference voltage generates 2.5 V accurate to $\pm 5 \%$ over temperature, supply, and load variations.. This reference voltage generator is used to bias VDIG LDO. A second reference generator generates a stable 2 V reference accurate to $\pm 2 \%$ over temperature, supply, and load variations. In order to decrease noise, it is recommended to bypass BGCAP to AGND with a $0.1 \mu \mathrm{~F}$ or greater ceramic capacitor, as close as possible to the BGCAP pin as possible.

ACTIVE BIAS CONTROLLER

High Voltage Linear Regulator (LDOCC/VDRAIN)

The HMC920LP5E has an adjustable high-voltage, high-current linear regulator (LDOCC) to provide the drain supply rail of the external RF amplifier. The LDOCC output can source up to 500 mA loads. The LDOCC output can be adjusted to regulate any voltage level from 3 V to 15 V through external resistors R8 and R5.

To adjust the LDOCC, set R5 to $10 \mathrm{k} \Omega$ and determine the value of R8 using the equation (2):

$$
\begin{equation*}
\mathrm{R} 8=\frac{\mathrm{R} 5}{2} \times(V D O C C-2) \tag{2}
\end{equation*}
$$

Place the R8 and R5 as close as possible to the LDOFB.
The LDOCC output is connected to the VDRAIN output through an internal MOSFET ($\mathrm{R}_{\mathrm{DS}-\mathrm{ON}}=0.5 \Omega$) switch.
This internal MOSFET is controlled through power-up sequencing which ensures that no voltage is applied to drain of the external amplifier until the gate voltage is pulled down to VNEG(ensuring external amplifier disabled). Connect the external amplifier to the VDRAIN output to use power-up sequencing feature.

Note that there will be a voltage drop from LDOCC to VDRAIN due to finite RDS_ON resistance of the internal switch. To compensate for this voltage drop choose the LDOCC value as shown in equation (3).

$$
\begin{equation*}
V_{\text {LDOCC }}=V_{\text {DRAIN }}+I_{\text {DRAIN }} \times 0.5 \tag{3}
\end{equation*}
$$

Where $\mathrm{V}_{\text {DRAIN }}$ is the supply voltage of the external amplifier and $I_{\text {DRAIN }}$ is the desired constant bias current through the external amplifier.

To ensure stable operation of the LDOCC output, bypass LDOCC to AGND with a $10 \mu \mathrm{~F}$ tantalum capacitor (with $\mathrm{R}_{\mathrm{ESR}}$ $>200 \mathrm{~m} \Omega$).

The HMC920LP5E has power foldback and short circuit protection, refer to the respective section for detailed description of these features.

Negative Voltage Generator (VNEGOUT)

The HMC920LP5E has an internal regulated charge pump block to generate negative voltage (VNEGOUT) required for depletion mode devices. The HMC920LP5E generates -2.5 V at the VNEGOUT output in default configuration. Contact factory if a voltage rail different than -2.5 V is required.

The HMC920LP5E is designed to reject the ripple on the VNEGOUT by isolating VNEGOUT from the VGATE.
The negative voltage is required only for depletion mode devices, and it can be disabled through the VGATEFB and VNEGFB pins. See Table-1 how to set the operation mode.

Enable/Disable (EN)

The active bias control loop is enabled when EN is pulled up to VDIG, and it is disabled when it is pulled down to GND. If EN is left floating HMC920LP5E is enabled through the internal weak pull-up. Note that LDOCC, VDIG and VNEG operation is independent of EN condition. EN signal controls the operation of only VGATE and VDRAIN outputs. When EN pulled down to GND, HMC920LP5E discharges VDRAIN down to GND and it pulls the VGATE down to VNEG. Please see the "Active Bias Control Loop" section for detailed explanation.

ACTIVE BIAS CONTROLLER

Active Bias Control Loop

The HMC920LP5E regulates the bias current ($I_{\text {DRAIN }}$) of the external amplifier through VGATE output connected to the gate of the external amplifier. In this closed loop operation the current passing through the external amplifier is sampled and is used to adjust VGATE to achieve constant quiescent bias through the external amplifier.
The HMC920LP5E continuously compensates for any supply, temperature, process variations and threshold drifts due to aging, without any calibration.
The gate control of the HMC920LP5E can both sink and source current (at least $\pm 4 \mathrm{~mA}$) to achieve constant bias current over input power variations.

The bias current passing through the external amplifier can be adjusted with $R_{\text {SENSE }}$, where $R_{\text {SENSE }}$ is the total resistor ($\mathrm{R} 4+\mathrm{R} 19$) connected from ISENSE to GND. Use the relation given in equation (4) to set the desired bias current through the external amplifier.

$$
\begin{equation*}
I_{\text {DRAIN }}=\frac{165}{R_{\text {SENSE }}}+0.0135 \mathrm{~A} \tag{4}
\end{equation*}
$$

$R_{\text {SENSE }}$ adjustment is referenced to the total resistance seen from ALMM (PIN\#27) to GND. Connect $5 \mathrm{k} \Omega$ resistor from ALMM to GND (R16 + R15) to ensure equation (4) holds.

Power Foldback

The HMC920LP5E employs a power foldback protection feature to limit the power consumption on the HMC920LP5E package under excessive loading such as a short circuit from VDRAIN to GND.
HMC920LP5E senses the instantaneous power consumption over the VDRAIN LDO ($\mathrm{P}_{\text {SENSE }}=$ (Vdd-VDRAIN) $x I_{\text {DRAIN }}$), and limits the instantaneous power consumption less than 4.5 W . This is achieved by decreasing VDRAIN voltage and $I_{\text {DRAIN }}$ current simultaneously.
The advantage of the power foldback protection feature over a hard current limit is safe operation with higher user flexibility.

The following plots present the power foldback characteristic over Vdd.

Power Foldback VDRAIN vs. IDRAIN over Vdd

Power Foldback Delivered Power vs. IDRAIN Over Vdd

Power Dissipated on HMC920LP5E vs．IDRAIN Over Vdd

Short Circuit Protection

The pass transistor in every LDO is in series with the load，and a large amount of current will flow through the regulator during a short condition when no precaution circuitry is included in the system．The HMC920LP5E limits the current through the pass transistor to less than 900 mA ，and this current limit acts as the secondary short circuit protection to the power foldback feature．During a VDRAIN－GND short circuit HMC920LP5E also pulls down the VGATE to the lowest voltage supply VNEG，and disables the external amplifier completely for safety．

HMC920LP5E continuously checks the following pins for short conditions and disables the system when a short to ground is detected．

```
－LDOCC
－VDRAIN
－VNEGIN（in depletion mode）
－FIXBIAS
```


Over／Under Current Alarm

The HMC920LP5E provides over and under current alarm indicator CURALM（pin\＃8）signal．The CURALM is pulled up to VDIG when the IDRAIN current exceeds $\pm 25 \%$ of IDRAIN regulation target value．

The condition of CURALM signal does not effect the operation of HMC920LP5E，it is provided only for monitoring purposes．

The CURALM signal is activated if the low and high current duration is longer than a certain threshold．This duration can be adjusted through the external resistor R26 with equation 5．Figure－2 presents a behavioral sketch how the CURALM indicator signal acts under various IDRAIN conditions．

$$
\begin{equation*}
\mathrm{T}_{\text {wait }}=\mathrm{R} 26 \times 5.1 \times 10^{-4}+3 \tag{5}
\end{equation*}
$$

where $T_{\text {wait }}$ is in micro seconds．Changing R26 from 10 kOhms to 10 Megohms， $\mathrm{T}_{\text {wait }}$ can be adjusted from 8.1 usec to 51 msec ．

Figure 2. Current Alarm Behavior

Vdd Under-Voltage Alarm

The HMC920LP5E provides a low Vdd indicator signal (VddALM pin\#31) when the Vdd supply voltage is lower than an user adjustable threshold value. VddALM pin pulled down to GND when the Vdd voltage is lower than the adjusted VddTHR value. To adjust the Vdd under-voltage alarm threshold set R6 (the resistance from VddCHK to AGND) according to the relation provided in (6).

$$
\begin{equation*}
R 6=\frac{150 k \Omega}{\left(3 \times \frac{V d d T H R}{0.88}-13\right)} \tag{6}
\end{equation*}
$$

Power-up and Enable Sequencing

To ensure the safety of the external amplifier the HMC920LP5E provides a certain power-up sequence for enabling active bias control loop. During start-up VDRAIN is kept at GND while VGATE is taken to the most negative supply available (VGATE=VNEG). This ensures that external amplifier is completely turned-off before VDRAIN is applied. When EN signal is received VDRAIN is applied and the active bias loop is enabled. The final phase of the power-up sequence is completed by increasing the VGATE linearly until the set IDRAIN value is achieved.

For power-down and disabling the same sequencing is applied in the reverse order.

Daisy-Chain Operation

HMC920LP5E produces a trigger out signal (TRGOUT pin\#24) when the external amplifier achieves a stable bias current (IDRAIN). This trigger signal can be used to enable additional HMC920LP5E chips in a chain of amplifiers. The triggering sequence can be routed in anyway, from input to output, or from output to input depending on the use. Figure-3 presents a sample use of three HMC920LP5Es in an amplifier chain. Please note that, only one of the HMC920LP5E is used to generate the negative voltage and the remaining HMC920LP5E is set to receive external negative voltages (which is provided from the master HMC920LP5E). Generating negative voltage only with single HMC920LP5E reduces the number of the components in the system, and decreases the over all current consumption slightly, compared to each bias controller generating its own negative voltage.
To ensure proper start-up, the system enable signal should ne applied to the chip that has the negative voltage generator.

Figure 3. Daisy Chain Operation

Operation Modes

HMC920LP5E can be configured to bias both enhancement and depletion mode external amplifiers. The mode of operation can be selected by setting two pins (VNEGFB, VGATEFB) as tabulated in Table-1. The connection to the VNEGIN should be adjusted accordingly.

In order not to bias external amplifier in a wrong region, please make sure that the correct mode of operation is selected before powering up HMC920LP5E.

HMC920LP5E does not allow the internal negative voltage generator to work if an enhancement mode is selected. Therefore, if VNEGFB is left floating while VGATEFB is grounded, HMC920LP5E will stay in standby mode.

Please note that the external negative voltage should be between -2.5 V to -3.5 V for HMC920LP5E to operate.
Table 1. Mode Selection

	VNEGFB	VGATEFB	VNEGIN	Description
MODE1 (Depletion/Master Mode)	FLOAT	FLOAT	Connected to VNEGOUT	Depletion mode transistor. Internal negative voltage generator is active and generates -2.5V. Sample application schematic given shown in Fig.4a.
MODE2 (Depletion/Slave Mode)	GND	FLOAT	Connected to External VSS	Depletion mode transistor. Internal negative voltage generator is disabled. An external negative voltage less than -2.3V should be connected to VNEGIN. Sample application schematic given shown in Fig.4b.
---	FLOAT	GND	N/A	Not allowed. HMC920LP5E stays in standby.
MODE3 (Enhancement Mode)	GND	GND	Connected to GND	Enhancement mode transistor. Internal negative voltage generator is disabled. Sample application schematic given shown in Fig.5.

Figure 4a: Depletion/Master Mode Amplifier Typical Application Circuit (Mode 1)

Figure 4b: Depletion/Slave Mode Amplifier Typical Application Circuit (Mode 2)

Figure 5: Enhancement Mode Amplifier Typical Application Circuit (Mode 3)

HMC920LP5E

Table 2 - List of Bias Settings for Various Hittite Amplifiers

Hittite Part Number	VDRAIN (V)	IDRAIN (mA)	LDOCC (V)	RSENSE (kת)	R8 (k)
LNAs					
HMC609LC4	6	170	6.09	1.0	20.4
HMC594LC3B	6	100	6.05	1.7	20.3
HMC753LP4	5	55	5.03	3.0	15.1
HMC490LP5	5	200	5.10	0.8	15.5
HMC504LC4B	4	90	4.05	1.8	10.2
HMC-ALH140	4	60	4.03	2.8	10.2
HMC-ALH244	4	45	4.02	3.7	10.1
HMC772LC4	4	45	4.02	3.7	10.1
HMC752LC4	3	70	3.04	2.4	5.2
Gain Blocks \& Drivers					
HMC635LC4	5	280	5.14	0.6	15.7
HMC-AUH256	5	295	5.15	0.6	15.7
Linear \& Power					
HMC757	7	395	7.20	0.4	26.0
HMC441LM1	5	90	5.05	1.8	15.2
$\begin{aligned} & \text { HMC442LM1 / } \\ & \text { HMC442LC3B } \end{aligned}$	5	85	5.04	1.9	15.2
HMC-ABH209	5	80	5.04	2.1	15.2
HMC-APH403	5	475	5.24	0.3	16.2
HMC-APH596	5	400	5.20	0.4	16.0
HMC608LC4	5	310	5.16	0.5	15.8
HMC498LC4	5	250	5.13	0.7	15.6
HMC-ABH241	5	220	5.11	0.8	15.6
HMC499LC4	5	200	5.10	0.8	15.5
HMC-APH196	4.5	400	4.70	0.4	13.5
HMC-APH633	4	240	4.12	0.7	10.6
HMC-AUH317	4	160	4.08	1.0	10.4
HMC-AUH318	4	160	4.08	1.0	10.4
HMC-AUH320	4	130	4.07	1.3	10.3
HMC863	6	375	6.19	0.4	20.9
Wideband (Distributed)					
HMC637LP5	12	400	12.20	0.4	51.0
HMC619LP5	12	300	12.15	0.55	50.8
HMC559	10	400	10.20	0.4	41.0
HMC562	8	80	8.04	2.1	30.2
HMC460LC5	8	75	8.04	2.2	30.2
HMC659LC5	8	300	8.15	0.6	30.8
HMC464LP5	8	290	8.15	0.6	30.7
HMC459	8	290	8.15	0.6	30.7
HMC465LP5	8	160	8.08	1.0	30.4
HMC462LP5	5	66	5.03	2.5	15.2

ACTIVE BIAS CONTROLLER

RoHS $\sqrt{ }$

Table 2 －List of Bias Settings for Various Hittite Amplifiers（Continued）

Hittite Part Number	VDRAIN（V）	IDRAIN（mA）	LDOCC（V）	RSENSE（kת）	R8（kת）
HMC463LP5	5	60	5.03	2.8	15.2
HMC635	5	280	5.14	0.6	15.7
HMC634LC4	5	180	5.09	0.9	15.5
HMC633LC4	5	180	5.09	0.9	15.5
HMC795LP5E	10	400	10.20	0.4	41.0
Microwave \＆Optical Drivers					
HMC870LC5	7	165	7.08	1.0	25.4
HMC871LC5	8	75	8.04	2.2	30.2

[^0]: ［1］4－Digit lot number XXXX

